22 research outputs found

    Opening the AC-Unification Race

    Get PDF
    This note reports about the implementation of AC-unification algorithms, based on the variable-abstraction method of Stickel and on the constant-abstraction method of Livesey, Siekmann, and Herold. We give a set of 105 benchmark examples and compare execution times for implementations of the two approaches. This documents for other researchers what we consider to be the state-of-the-art performance for elementary AC-unification problems

    Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells

    Get PDF
    Botulinum neurotoxins (BoNTs) cause botulism by entering neurons and cleaving proteins that mediate neurotransmitter release; disruption of exocytosis results in paralysis and death. The receptors for BoNTs are thought to be composed of both proteins and gangliosides; however, protein components that mediate toxin entry have not been identified. Using gain-of-function and loss-of-function approaches, we report here that the secretory vesicle proteins, synaptotagmins (syts) I and II, mediate the entry of BoNT/B (but not BoNT/A or E) into PC12 cells. Further, we demonstrate that BoNT/B entry into PC12 cells and rat diaphragm motor nerve terminals was activity dependent and can be blocked using fragments of syt II that contain the BoNT/B-binding domain. Finally, we show that syt II fragments, in conjunction with gangliosides, neutralized BoNT/B in intact mice. These findings establish that syts I and II can function as protein receptors for BoNT/B

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Global validation of the WSES Sepsis Severity Score for patients with complicated intra-abdominal infections : a prospective multicentre study (WISS Study)

    Get PDF
    Background: To validate a new practical Sepsis Severity Score for patients with complicated intra-abdominal infections (cIAIs) including the clinical conditions at the admission (severe sepsis/septic shock), the origin of the cIAIs, the delay in source control, the setting of acquisition and any risk factors such as age and immunosuppression. Methods: The WISS study (WSES cIAIs Score Study) is a multicenter observational study underwent in 132 medical institutions worldwide during a four-month study period (October 2014-February 2015). Four thousand five hundred thirty-three patients with a mean age of 51.2 years (range 18-99) were enrolled in the WISS study. Results: Univariate analysis has shown that all factors that were previously included in the WSES Sepsis Severity Score were highly statistically significant between those who died and those who survived (p <0.0001). The multivariate logistic regression model was highly significant (p <0.0001, R-2 = 0.54) and showed that all these factors were independent in predicting mortality of sepsis. Receiver Operator Curve has shown that the WSES Severity Sepsis Score had an excellent prediction for mortality. A score above 5.5 was the best predictor of mortality having a sensitivity of 89.2 %, a specificity of 83.5 % and a positive likelihood ratio of 5.4. Conclusions: WSES Sepsis Severity Score for patients with complicated Intra-abdominal infections can be used on global level. It has shown high sensitivity, specificity, and likelihood ratio that may help us in making clinical decisions.Peer reviewe

    A proposal for a CT driven classification of left colon acute diverticulitis

    Get PDF

    Recombinant Holotoxoid Vaccine against Botulism▿

    No full text
    The botulinum neurotoxins (BoNT) are the most toxic proteins for humans and designated “Category A Select Agents.” The current vaccine against botulism is in limited supply, and there is a need to develop new vaccine strategies. A recombinant BoNT/A toxoid was produced in Clostridium botulinum that contained a double amino acid substitution, R363A Y365F (termed BoNT/ARYM). BoNT/ARYM was noncatalytic for SNAP25 and nontoxic for mice. Immunization with BoNT/ARYM protected mice from challenge at levels that were similar to chemically inactivated BoNT/A toxoid. BoNT/ARYM elicited an immune response against the light-chain and heavy-chain components of the toxin. Neutralizing anti-BoNT/ARYM sera blocked BoNT toxicity in primary cortical neurons and blocked ganglioside binding by the heavy chain. BoNT/ARYM represents a viable vaccine candidate for a holotoxoid against botulism

    Subunit Vaccine against the Seven Serotypes of Botulism▿

    No full text
    Botulinum neurotoxins (BoNTs) are the most toxic proteins for humans and are classified as category A toxins. There are seven serotypes of BoNTs defined by the lack of cross-serotype toxin neutralization. Thus, an effective vaccine must neutralize each BoNT serotype. BoNTs are organized as dichain A-B toxins, where the N-terminal domain (light chain) is a zinc metalloprotease targeting soluble NSF attachment receptor proteins that is linked to the C-terminal domain (heavy chain [HC]) by a disulfide bond. The HC comprises a translocation domain and a C-terminal receptor binding domain (HCR). HCRs of the seven serotypes of BoNTs (hepta-HCR) were engineered for expression in Escherichia coli, and each HCR was purified from E. coli lysates. Immunization of mice with the E. coli-derived hepta-serotype HCR vaccine elicited an antibody response to each of the seven BoNT HCRs and neutralized challenge by 10,000 50% lethal doses of each of the seven BoNT serotypes. A solid-phase assay showed that the anti-hepta-serotype HCR sera inhibited the binding of HCR serotypes A and B to the ganglioside GT1b, the first step in BoNT intoxication of neurons. This is the first E. coli-derived vaccine that effectively neutralizes each of the seven BoNT serotypes

    Studies of the role of tubulin beta II isotype in regulation of mitochondrial respiration in intracellular energetic units in cardiac cells.

    No full text
    International audienceThe aim of this study was to investigate the possible role of tubulin βII, a cytoskeletal protein, in regulation of mitochondrial oxidative phosphorylation and energy fluxes in heart cells. This isotype of tubulin is closely associated with mitochondria and co-expressed with mitochondrial creatine kinase (MtCK). It can be rapidly removed by mild proteolytic treatment of permeabilized cardiomyocytes in the absence of stimulatory effect of cytochrome c, that demonstrating the intactness of the outer mitochondrial membrane. Contrary to isolated mitochondria, in permeabilized cardiomyocytes (in situ mitochondria) the addition of pyruvate kinase (PK) and phosphoenolpyruvate (PEP) in the presence of creatine had no effect on the rate of respiration controlled by activated MtCK, showing limited permeability of voltage-dependent anion channel (VDAC) in mitochondrial outer membrane (MOM) for ADP regenerated by MtCK. Under normal conditions, this effect can be considered as one of the most sensitive tests of the intactness of cardiomyocytes and controlled permeability of MOM for adenine nucleotides. However, proteolytic treatment of permeabilized cardiomyocytes with trypsin, by removing mitochondrial βII tubulin, induces high sensitivity of MtCK-regulated respiration to PK-PEP, significantly changes its kinetics and the affinity to exogenous ADP. MtCK coupled to ATP synthasome and to VDAC controlled by tubulin βII provides functional compartmentation of ATP in mitochondria and energy channeling into cytoplasm via phosphotransfer network. Therefore, direct transfer of mitochondrially produced ATP to sites of its utilization is largely avoided under physiological conditions, but may occur in pathology when mitochondria are damaged. This article is part of a Special Issue entitled ''Local Signaling in Myocytes''
    corecore